RAG (Retrieval Augmented Generation)
For certain LLM tasks like answering questions, providing relevant context is essential. One common architecture is a two-stage RAG pipeline:

- Offline stage: Preprocess and index documents (“building the index”).
- Online stage: Given a question, generate answers by retrieving the most relevant context.
Stage 1: Offline Indexing
We create three Nodes:
ChunkDocs
– chunks raw text.EmbedDocs
– embeds each chunk.StoreIndex
– stores embeddings into a vector database.
class ChunkDocs(BatchNode):
def prep(self, shared):
# A list of file paths in shared["files"]. We process each file.
return shared["files"]
def exec(self, filepath):
# read file content. In real usage, do error handling.
with open(filepath, "r", encoding="utf-8") as f:
text = f.read()
# chunk by 100 chars each
chunks = []
size = 100
for i in range(0, len(text), size):
chunks.append(text[i : i + size])
return chunks
def post(self, shared, prep_res, exec_res_list):
# exec_res_list is a list of chunk-lists, one per file.
# flatten them all into a single list of chunks.
all_chunks = []
for chunk_list in exec_res_list:
all_chunks.extend(chunk_list)
shared["all_chunks"] = all_chunks
class EmbedDocs(BatchNode):
def prep(self, shared):
return shared["all_chunks"]
def exec(self, chunk):
return get_embedding(chunk)
def post(self, shared, prep_res, exec_res_list):
# Store the list of embeddings.
shared["all_embeds"] = exec_res_list
print(f"Total embeddings: {len(exec_res_list)}")
class StoreIndex(Node):
def prep(self, shared):
# We'll read all embeds from shared.
return shared["all_embeds"]
def exec(self, all_embeds):
# Create a vector index (faiss or other DB in real usage).
index = create_index(all_embeds)
return index
def post(self, shared, prep_res, index):
shared["index"] = index
# Wire them in sequence
chunk_node = ChunkDocs()
embed_node = EmbedDocs()
store_node = StoreIndex()
chunk_node >> embed_node >> store_node
OfflineFlow = Flow(start=chunk_node)
Usage example:
shared = {
"files": ["doc1.txt", "doc2.txt"], # any text files
}
OfflineFlow.run(shared)
Stage 2: Online Query & Answer
We have 3 nodes:
EmbedQuery
– embeds the user’s question.RetrieveDocs
– retrieves top chunk from the index.GenerateAnswer
– calls the LLM with the question + chunk to produce the final answer.
class EmbedQuery(Node):
def prep(self, shared):
return shared["question"]
def exec(self, question):
return get_embedding(question)
def post(self, shared, prep_res, q_emb):
shared["q_emb"] = q_emb
class RetrieveDocs(Node):
def prep(self, shared):
# We'll need the query embedding, plus the offline index/chunks
return shared["q_emb"], shared["index"], shared["all_chunks"]
def exec(self, inputs):
q_emb, index, chunks = inputs
I, D = search_index(index, q_emb, top_k=1)
best_id = I[0][0]
relevant_chunk = chunks[best_id]
return relevant_chunk
def post(self, shared, prep_res, relevant_chunk):
shared["retrieved_chunk"] = relevant_chunk
print("Retrieved chunk:", relevant_chunk[:60], "...")
class GenerateAnswer(Node):
def prep(self, shared):
return shared["question"], shared["retrieved_chunk"]
def exec(self, inputs):
question, chunk = inputs
prompt = f"Question: {question}\nContext: {chunk}\nAnswer:"
return call_llm(prompt)
def post(self, shared, prep_res, answer):
shared["answer"] = answer
print("Answer:", answer)
embed_qnode = EmbedQuery()
retrieve_node = RetrieveDocs()
generate_node = GenerateAnswer()
embed_qnode >> retrieve_node >> generate_node
OnlineFlow = Flow(start=embed_qnode)
Usage example:
# Suppose we already ran OfflineFlow and have:
# shared["all_chunks"], shared["index"], etc.
shared["question"] = "Why do people like cats?"
OnlineFlow.run(shared)
# final answer in shared["answer"]